Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model.
نویسندگان
چکیده
Crocetin, a carotenoid compound derived from saffron, has long been used as a traditional ancient medicine against different human diseases including cancer. The aim of the series of experiments was to systematically determine whether crocetin significantly affects pancreatic cancer growth both in vitro and/or in vivo. For the in vitro studies, first, MIA-PaCa-2 cells were treated with crocetin and in these sets of experiments, a proliferation assay using H(3)-thymidine incorporation and flow cytometric analysis suggested that crocetin inhibited proliferation. Next, cell cycle proteins were investigated. Cdc-2, Cdc-25C, Cyclin-B1, and epidermal growth factor receptor were altered significantly by crocetin. To further confirm the findings of inhibition of proliferation, H(3)-thymidine incorporation in BxPC-3, Capan-1, and ASPC-1 pancreatic cancer cells was also significantly inhibited by crocetin treatment. For the in vivo studies, MIA-PaCa-2 as highly aggressive cells than other pancreatic cancer cells used in this study were injected into the right hind leg of the athymic nude mice and crocetin was given orally after the development of a palpable tumor. The in vivo results showed significant regression in tumor growth with inhibition of proliferation as determined by proliferating cell nuclear antigen and epidermal growth factor receptor expression in the crocetin-treated animals compared with the controls. Both the in vitro pancreatic cancer cells and in vivo athymic nude mice tumor, apoptosis was significantly stimulated as indicated by Bax/Bcl-2 ratio. This study indicates that crocetin has a significant antitumorigenic effect in both in vitro and in vivo on pancreatic cancer.
منابع مشابه
Tumorigenicity of Esophageal Cancer Stem Cells (ECSCs) in nude mouse xenograft model
Background and objectives: Modeling cancer in vivo is a very important tool to investigate cancer pathogenesis and molecular mechanisms involved in cancer progression. Laboratory mice are the most common animal used for rebuilding human cancer in vivo. Cancer stem cells (CSCs) are the main reason of failure in cancer therapy because of tumor relapse and metastasis. Isolation of cancer stem cell...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملPseudomonas aeruginosa-mannose-sensitive hemagglutinin inhibits pancreatic cancer cell proliferation and induces apoptosis via the EGFR pathway and caspase signaling
Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) has demonstrated efficacy against several solid tumors. In this study, we found that PA-MSHA inhibited the proliferation of PANC-1 and SW1990 pancreatic cancer cells, but had no obvious effects on HPDE6-C7 normal human pancreatic duct epithelial cells. Electron microscopy revealed the presence of apoptotic bodies and intracellular...
متن کاملS100A4 promotes pancreatic cancer progression through a dual signaling pathway mediated by Src and focal adhesion kinase
S100A4 expression is associated with poor clinical outcomes of patients with pancreatic cancer. The effects of loss or gain of S100A4 were examined in pancreatic cancer cell lines. S100A4 downregulation remarkably reduces cell migration and invasion, inhibits proliferation, and induces apoptosis in pancreatic tumor cells. S100A4 downregulation results in significant cell growth inhibition and a...
متن کاملDown-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts.
PURPOSE Zinc levels have been correlated with cancer risk, although the role of zinc and zinc transporters in cancer progression is largely unknown. We recently found that a zinc transporter, ZIP4, is overexpressed in pancreatic cancer. In this study, we further deciphered the role that ZIP4 plays in a pancreatic cancer mouse model by silencing ZIP4. EXPERIMENTAL DESIGN ZIP4 stable silencing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2009